Decreased renal perfusion rapidly increases plasma membrane Na-K-ATPase in rat cortex by an angiotensin II-dependent mechanism.
نویسندگان
چکیده
To understand how rapid changes in blood pressure can regulate Na-K-ATPase in the kidney cortex, we tested the hypothesis that a short-term (5 min) decrease in renal perfusion pressure will increase the amount of Na-K-ATPase in the plasma membranes by an angiotensin II-dependent mechanism. The abdominal aorta of anesthetized Sprague-Dawley rats was constricted with a ligature between the renal arteries, and pressure was monitored on either side during acute constriction. Left renal perfusion pressure was reduced to 70 +/- 1 mmHg (n = 6), whereas right renal perfusion pressure was 112 +/- 4 mmHg. In control (nonconstricted) rats (n = 5), pressure to both kidneys was similar at 119 +/- 6 mmHg. After 5 min of reduced perfusion, femoral venous samples were taken for plasma renin activity (PRA) and the kidneys excised. The cortex was dissected, minced, sieved, and biotinylated. Lower perfusion left kidneys showed a 41% increase (P < 0.003) in the amount of Na-K-ATPase in the plasma membrane compared with right kidneys. In controls, there was no difference in cell surface Na-K-ATPase between left and right kidneys (P = 0.47). PRA was 57% higher in experimental animals compared with controls. To test the role of angiotensin II in mediating the increase in Na-K-ATPase, we repeated the experiments (n = 6) in rats treated with ramiprilat. When angiotensin-converting enzyme was inhibited, the cell surface Na-K-ATPase of the two kidneys was equal (P =0.46). These results confirm our hypothesis: rapid changes in blood pressure regulate trafficking of Na-K-ATPase in the kidney cortex.
منابع مشابه
Angiotensin II directly stimulates activity and alters the phosphorylation of Na-K-ATPase in rat proximal tubule with a rapid time course.
We present evidence that Na-K-ATPase in the rat proximal tubule is directly activated by ANG II much faster than previously observed. Specifically, we show that a 2-min exposure to 0.1 and 1 nM ANG II slowed the rate of intracellular sodium accumulation in response to an increase in extracellular sodium added in the presence of gramicidin D. From these data, we show that ANG II directly stimula...
متن کاملRegulation of renal Na(+),K(+)-ATPase and ouabain-sensitive H(+),K(+)-ATPase by the cyclic AMP-protein kinase A signal transduction pathway.
We investigated the effect of the cyclic AMP-protein kinase A (PKA) signalling pathway on renal Na(+),K(+)-ATPase and ouabain-sensitive H(+),K(+)-ATPase. Male Wistar rats were anaesthetized and catheter was inserted through the femoral artery into the abdominal aorta proximally to the renal arteries for infusion of the investigated substances. Na(+),K(+)-ATPase activity was measured in the pres...
متن کاملThyroid hormone stimulates Na-K-ATPase activity and its plasma membrane insertion in rat alveolar epithelial cells.
Na-K-ATPase protein is critical for maintaining cellular ion gradients and volume and for transepithelial ion transport in kidney and lung. Thyroid hormone, 3,3',5-triiodo-l-thyronine (T3), given for 2 days to adult rats, increases alveolar fluid resorption by 65%, but the mechanism is undefined. We tested the hypothesis that T3 stimulates Na-K-ATPase in adult rat alveolar epithelial cells (AEC...
متن کاملAngiotensin II stimulates elution of Na-K-ATPase from a digoxin-affinity column by increasing the kinetic response to ligands that trigger the decay of E2-P.
We earlier observed that treating rat proximal tubules with concentrations of angiotensin II (ANG II) that directly stimulate Na-K-ATPase activity changed how Na-K-ATPase subsequently eluted from an ouabain-affinity column. In this study we tested whether ANG II increases the rate of elution in response to ligands that trigger the decay of E(2)-P, which implies a change in functional properties...
متن کاملTrafficking of Na-K-ATPase and dopamine receptor molecules induced by changes in intracellular sodium concentration of renal epithelial cells.
Most of the transepithelial transport of sodium in proximal tubules occurs through the coordinated action of the apical sodium/proton exchanger and the basolateral Na-K-ATPase. Hormones that regulate proximal tubule sodium excretion regulate the activities of these proteins. We have previously demonstrated that the level of intracellular sodium concentration modulates the regulation of Na-K-ATP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 297 5 شماره
صفحات -
تاریخ انتشار 2009